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Interplay of disorder and nonlinearity 

Waves in disordered media – Anderson localization 

(Anderson Phys. Rev. 1958). Experiments on BEC (Billy 

et al. Nature 2008)  

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies (Shepelyansky 
PRL 1993, Molina Phys. Rev. B 1998, Pikovsky & 
Shepelyansky PRL 2008, Kopidakis et al. PRL 2008) 

Experiments: propagation of light in disordered 1d 
waveguide lattices (Lahini et al. PRL 2008) 
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The Klein – Gordon (KG) model 
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The discrete nonlinear Schrödinger 

(DNLS) equation 
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Scales 
Linear case:                             , width of the squared frequency spectrum: 

 

 

 

 

 

Average spacing of squared eigenfrequencies of NMs within the range of a  
 

localization volume:  

 

Nonlinearity induced squared frequency shift of a single site oscillator 

 

 
 

 

The relation of the two scales                     with the nonlinear 
frequency shift δl determines the packet evolution. 
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Distribution characterization 
We consider normalized energy distributions in normal mode (NM) space  

of the νth NM. 
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measures the number of stronger excited modes in zν. Single mode P=1, 

Equipartition of energy P=N.  
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3 Different Dynamical Regimes 
 

Weak Chaos Regime: δ<d,     m2~t1/3 

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina PRB (1998) – Pikovsky, Shepelyansky, 

PRL (2008)]. 
 

 

Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3 

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime. 
 

 

Selftrapping Regime: δ>Δ 
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)]. 
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Single site excitations 

No strong chaos regime 

In weak chaos regime we 

averaged the measured 

exponent α (m2~tα) over 

20 realizations: 

α=0.33±0.05 (KG) 

α=0.33±0.02 (DLNS) 

 

[Flach, Krimer,  Ch. S., 

2009, PRL – Ch. S., 

Krimer, Komineas, 

Flach, 2009, PRE – Ch. 

S., Flach, 2010, PRE] 

 

DNLS W=4, β= 0.1, 1, 4.5 KG W = 4, E = 0.05, 0.4, 1.5 

slope 1/3 slope 1/3 

slope 1/6 slope 1/6 
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Crossover from strong to weak chaos 
We consider compact initial wave packets of width L=V [Laptyeva, 

Bodyfelt, Krimer, Ch. S., Flach, 2010, EPL – Bodyfelt, Laptyeva, Ch. S., 

Krimer, Flach, 2011, PRE] 

Time evolution 

DNLS KG 



H. Skokos 

 

“Complex Matter” Second Plenary Meeting 

Patras, 21 July 2011 

9 

Crossover from strong to weak chaos 

W=4 

 

Average over 1000 realizations! 
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DNLS β= 0.04, 0.72, 3.6 KG E= 0.01, 0.2, 0.75 
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Conclusions 
• We predicted theoretically and verified numerically the existence of three 

different dynamical behaviors: 

 Weak Chaos Regime: δ<d,     m2~t1/3 

 Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3  

 Selftrapping Regime: δ>Δ  

• Generality of results: a) Two different models: KD and DNLS, b) 

Predictions made for DNLS are verified for both models. 

• Our results suggest that Anderson localization is eventually destroyed by 

the slightest amount of nonlinearity, since spreading does not show any 

sign of slowing down. 
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